A Faster Fixed-Parameter Approach to Drawing Binary Tanglegrams

نویسندگان

  • Sebastian Böcker
  • Falk Hüffner
  • Anke Truß
  • Magnus Wahlström
چکیده

Given two binary phylogenetic trees covering the same n species, it is useful to compare them by drawing them with leaves arranged side-by-side. To facilitate comparison, we would like to arrange the trees to minimize the number of crossings k induced by connecting pairs of identical species. This is the NP-hard Tanglegram Layout problem. By providing a fast transformation to the Balanced Subgraph problem, we show that the problem admits an O(2n) algorithm, improving upon a previous fixed-parameter approach with running time O(cn) where c ≈ 1000. We enhance a Balanced Subgraph implementation based on data reduction and iterative compression with improvements tailored towards these instances, and run experiments with real-world data to show the practical applicability of this approach. All practically relevant (k ≤ 1000) Tanglegram Layout instances can be solved exactly within seconds. Additionally, we provide a kernel-like bound by showing how to reduce the Balanced Subgraph instances for Tanglegram Layout on complete binary trees to a size of O(k log k).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drawing (Complete) Binary Tanglegrams: Hardness, Approximation, Fixed-Parameter Tractability

A binary tanglegram is a drawing of a pair of rooted binary trees whose leaf sets are in one-toone correspondence; matching leaves are connected by inter-tree edges. For applications, for example, in phylogenetics, it is essential that both trees are drawn without edge crossings and that the inter-tree edges have as few crossings as possible. It is known that finding a tanglegram with the minim...

متن کامل

Drawing Binary Tanglegrams: Hardness, Approximation, Fixed-Parameter Tractability

A binary tanglegram is a pair 〈S, T 〉 of binary trees whose leaf sets are in one-to-one correspondence; matching leaves are connected by inter-tree edges. For applications, for example in phylogenetics, it is essential that both trees are drawn with no edge crossing and that the inter-tree edges have as few crossings as possible. It is known that finding a drawing with the minimum number of cro...

متن کامل

On trees, tanglegrams, and tangled chains

Tanglegrams are a class of graphs arising in computer science and in biological research on cospeciation and coevolution. They are formed by identifying the leaves of two rooted binary trees. The embedding of the trees in the plane is irrelevant for this application. We give an explicit formula to count the number of distinct binary rooted tanglegrams with n matched leaves, along with a simple ...

متن کامل

A Satisfiability-Based Approach for Embedding Generalized Tanglegrams on Level Graphs

A tanglegram is a pair of trees on the same set of leaves with matching leaves in the two trees joined by an edge. Tanglegrams are widely used in computational biology to compare evolutionary histories of species. In this paper we present a formulation of two related combinatorial embedding problems concerning tanglegrams in terms of CNF-formulas. The first problem is known as planar embedding ...

متن کامل

Generalized Binary Tanglegrams: Algorithms and Applications

Several applications require the joint display of two phylogenetic trees whose leaves are matched by inter-tree edges. This issue arises, for example, when comparing gene trees and species trees or when studying the co-speciation of hosts and parasites. The tanglegram layout problem seeks to produce a layout of the two trees that minimizes the number of crossings between the inter-tree edges. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009